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Abstract

The main cause of death in the world continues to be cardiovascular disease, which affects annually 
over 900,000 people and in the entire word approximately 50% of the people suffering myocardial 
infarction (MI) die within 5 years. MI causes a number of cardiac pathologies like hypertension, blocked 
coronary arteries and valvular heart diseases resulting ischemic cardiac injury. In the last years, cardiac 
tissue engineering has made considerable progress, because this progress have been made towards 
developing injectable hydrogels for the purpose of cardiac repair and/or regeneration. This study aims 
to provide an updated survey of the major progress in the fl ied of injectable cardiac tissue engineering, 
including biomaterials (natural, synthetic or hybrid hydrogels), their advantages or disadvantages and the 
main seeding cell sources. Also, this review focuses on the progress made in the fi eld of hydrogels for 
cardiac tissue repair and/or regeneration for MI over the last years.
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Introduction

The heart is a fi bromuscular organ situated in the middle 

of thoracic mediastinum, the heart wall consists of three 

layers (myocardium, endocardium and epicardium) and four 

chambers (the right and left atrium; the right and left ventricle) 

[1]. 

One of the main causes of death in the world is represented 

by cardiovascular disease. It was reported that in USA, the 

myocardial infarction affects annually over 900,000 people and 

in the entire word approximately 50% of the people suffering 

myocardial infarction (MI) die within 5 years [2,3]. The main 

causes leading to congestive heart failure are represented 

by adverse remodeling of the left ventricle, loss of non-

regenerative cardiomyocytes and myocardial infarction [3]. 

In the last years, cardiac tissue engineering has made 

considerable progress. To solve these problems, biomaterials 

are increasingly investigated as potential scaffolds for cardiac 

tissue repair and/or regeneration. It was discovered that 

injectable hydrogels offers several advantages such as: ability to 

self-assemble in situ, minimally invasive delivery capacity (in 

comparison with other methods like in vitro engineered tissue 

or epicardial patch implantation) and capacity to encourage 

host tissue regeneration [2,4]. Also, these hydrogels possess 

the ability to mechanically stabilize the myocardial wall and 

modulate left ventricular remodeling alone or through delivery 

of therapies, like cells and growth factors and they can deliver 

cells directly into the infarcted wall (Figure 1) [4,5]. When 

the hydrogel is ready (gel formation) is injected at the site of 

interest and besides the mechanically supporting of the injured 

myocardium, the hydrogel present also a water-swollen matrix 

to encapsulate therapeutic molecules for targeted molecule 

delivery to the interest zone. Molecules (with repair and/or 

regeneration capacities of the damaged tissue) are encapsulated 

in the hydrogel and released locally over time (the hydrazone 

bond is then broken and occurs the molecules release from 

nanoparticles). In several studies it was reported that polymer 

matrices can be used to sustain the release of encapsulated 

molecules for up to 100 days and the release profi le initially 

showed a quick release followed by a slower release rate [6-10].

Figure 1: Illustration of the injectable hydrogels for the treatment of MI.
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Hydrogels

- Myocardial infarction causes a number of cardiac 
pathologies like hypertension, blocked coronary arteries 
and valvular heart diseases resulting ischemic cardiac 
injury [11]. In the last decade, this subject has been deeply 
studied and it was reported that most important criteria 
for these types of biomaterials are:Biocompatibility (the 
used materials has to cause minimal responses in vivo, 
non-toxicity and has to support cell culture in vitro);

- Biodegradability (the material must degrade within a 
given time - frame and its degradation products must 
also be biocompatible);

- Provide adequate mechanical support;

- Must be readily injectable.

Also, a biomaterial must offer adequate mechanical support 
requires to the specifi c application. For example, in the case of 
human myocardium the stiffness varies between 20 kPa (at the 
end of diastole) to 500 kPa (at the end of systole), in comparison 
with the case of rat myocardium were the stiffness varies 
between 0.1 and 140 kPa [12]. Another feature very important 
in the design of these hydrogels refers to the composition of 
materials, so there can exist three cases (natural hydrogels, 
synthetic hydrogels and hybrid hydrogels). 

In the fi rst case, the materials are natural (collagen, 
gelatin, hyaluronic acid, fi brin, alginate, chitosan, etc), but 
their mechanical properties are week and their physical 
properties can vary from source to source [13]. In the second 
case, the materials are synthetic (poly (acrylic acid) derivatives, 
polyethylene glycol, polyethylene oxide, polyvinyl alcohol, 
polypeptides, etc) and these materials present the advantages 
that provide consistent, controllable and precise mechanical 
properties like stiffness, porosity and elasticity, but present 
the disadvantages that some of these materials can induce 
cytotoxicity. Only polyethylene glycol (PEG), polylactide (PLA) 
and polylactide - glycolic acid (PLGA) have been approved 
by the FDA for clinical applications [7,14,15]. The last case 
is represented by natural and synthetic polymer - based 
hydrogels (ECM - fi brin hydrogels, ECM - polyethylene glycol 
hydrogels, fi brin - polyethylene glycol hydrogels, alginate – 
polypirrole, etc) to combine the advantages of both natural 
and synthetic materials [7,16]. The key steps involved in the 
preparation of an injectable hydrogel for cardiac tissue repair 
and/or regeneration are presented in Figure 2.

Natural hydrogels

The injectable hydrogels are superior to other forms of 
biomaterials beside their properties like cell/drug delivery 
vehicle or because it provides a platform for elucidating 
cardiogenic stem cell biology, the most important thing is due 
to the property that these hydrogels can be injected. Injectable 
hydrogels act as bulking agents by increasing the myocardial 
wall thickness, decreasing the left ventricle dilatation and then 
occurred the reduction of wall stress.

At the moment, polymers like collagen, fi brin, alginate, 
etc have been evaluated for their ability to form hydrogels 
in cardiac cell therapy/tissue engineering [5,17]. In table 1 
are presented some examples of natural polymers and their 
principal properties.

Collagen: Collagen is a fi brillar protein which is found at 
the vertebrate organisms existing in different forms in various 
tissues such as bones, skin, blood vessels, cornea, tendons, 
cartilage, etc, and also it is the most abundant protein from 

Figure 2: Schematic illustration of injectable hydrogel for cardiac tissue repair 
and/or regeneration.

Table 1: Summary of commonly used materials in cardiac tissue engineering and 
their properties.

Material Properties Stiffness (Pa) Concerns References

Collagen
Biocompatible, 
biodegradable

20–80

Weak strength, 
immune 

rejection, slow 
gelation

[14,18]

Chitosan
Biocompatible, 
biodegradable, 

bioactive 

It depends 
on the 

deacetylation 
degree 

(790±20)

Low mechanical 
resistance

[19,20]

Hyaluronic acid
Biocompatible, 
biodegradable,

It depends on 
the degrees of 
viscoelasticity 
- soft (78±16), 
medium (309± 
57), and stiff 

(596± 73)

Week 
mechanical 
properties

[7,21,22]

Fibrin gel
Biodegradable, 
biocompatible, 

availability
50

Slow gelation 
and fast 

degradation in 
vivo

[14,18]

Alginate

Biocompatible, 
low toxicity, 

relatively low 
cost

102–6 × 103

Low and 
uncontrollable 

in vivo 
degradation 

rate

[18,23,24]
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the invertebrate organism’s constitution (cilia). Its role in the 
body is both structurally and functionally, as being involved in 
complex mechanisms regulating of tissue growth and recovery 
[3,17,25]. Collagen is wildly used in medical applications 
due its biocompatibility, biodegradability, weak antigenicity 
and mostly because can be mixed with therapeutic proteins 
and drugs [3,17,18]. This protein presents an environment 
conducive to cell viability, promoting cell attachment and 
proliferation [3].

Collagen gels are viscoelastic (they are semisolid at rest 
and become liquid at stress). Ye Z. et al.,, reported a study 
where after MI it was applied collagen gel to thicken the infarct 
wall and it was observed that the volume of left ventricle was 
improved, preventing paradoxical systolic bulging [17]. 

In another study, collagen injections were administered 
at 1-week-old rat infarcts and it was observed that infarct 
thickness, stroke volume and ejection fraction have increased 
compared to the control (saline injection) [6]. Suuronen E.J. et 
al.,, reported that by adding CD133+ cells to the collagen matrix 
and then injecting it to the ischemic hindlimb of rats it was 
observed an increase of arteriole density. In comparison with 
the control (cells without collagen matrix) it was reported that 
the retention of transplanted cells in the target tissue was done 
for a long time [26]. Also, it was reported that a collagen patch 
has been successfully used like a delivery vehicle for human 
mesenchymal stem cells and human embryonic stem cell 
derived mesenchymal cells for cardiac repair [27]. 

In one study, Chiu L.L. et al., injected a collagen – chitosan 
hydrogel with encapsulated thymosin β4 (T4) into the infarct 
after performing left anterior descending artery ligation in 
rats. It was reported that was observed a signifi cant reduction 
of tissue loss of 13 ± 4% in comparison with the control 58 ± 
3% tissue loss (for no treatment applied) and 30 ± 8% tissue 
loss (for only T4 free). Also, it was reported that the controlled 
release of T4 in the case of MI enhances angiogenesis and 
presence of cardiomyocytes that are necessary for cardiac 
repair [28].

Gelatin: Gelatin is formed by decomposing the collagen 
triple-helix structure into single strand molecules. The 
preparation of gelatin refers to the post breakage treatment of 
the collagen structure, gelatin of type A is obtained with acidic 
treatment while gelatin of type B is obtained with alkaline 
treatment. Gelatin is a natural polymer with a high potential 
for application in cardiac repair after MI, due to their high 
biocompatibility, biodegradation, complete bioresorbability 
and simplicity [7].

Several studies have confi rmed that the gelatin hydrogel 
microspheres incorporating basic fi broblast growth factor 
(bFGF) shown to be benefi cial in acute MI models. For example, 
it was reported that the bFGF-loaded gelatin microspheres 
tested on rat and pig models led to angiogenesis induction and 
improved left ventricle systolic and diastolic function in the 
infarcted myocardium [29-31]. In another study, by injecting 
bFGF - gelatin microspheres it was reported that the presence 
of bFGF in vivo increased from 3 to 15 days and also increases 

vessel density in infarcted and border zone myocardium [32]. 
Also, Nakamura T. et al., administered bFGF - gelatin hydrogel 
alone, human cardiosphere derived cells (hCDCs) alone or the 
combination of both (bFGF - gelatin and hCDCs) to the infarcted 
porcine myocardium and the sustained release of bFGF from 
the gelatin lasted up to three weeks. It was reported that in 
the case of bFGF - gelatin hydrogel alone it was observed an 
improvement of the left ventricular ejection fraction, in the 
case of hCDCs alone it was reduced the infarct volume, while in 
the case of bFGF - gelatin and hCDCs combination was reported 
an improvement of the left ventricular ejection fraction and 
reductions in infarct size [33].

In another study, the erythropoietin - gelatin hydrogel 
drug delivery system was used for post-MI treatment rabbit 
model and it was reported a signifi cant improvement to the 
remodeling and functions of left ventricular in two months 
after MI by activating pro-survival signaling, antifi brosis and 
angiogenesis without causing any side effect [34].

Hyaluronic acid (HA): Hyaluronic acid is a linear 
glycosaminoglycan polymer that is found in the ECM of 
mammalian tissues, it’s a natural material and plays a variety 
of roles in tissue structure and function. HA is formed into 
hydrogels by covalent cross-linking with hydrazine derivatives. 
The main disadvantage of this polymer refers to their week 
mechanical properties, but these properties can be improved 
by modifying the molecular structure and composition with 
various functionalization [3,7,35-37]. 

It was reported that the modifi ed HA hydrogel provided a 
signifi cantly higher ejection fraction, increased wall thickness 
and better vessel formation, suggesting that the HA hydrogels 
can offer promising solution for cardiac tissue repair after 
MI [38]. On the other hand, Ifkovits J.L. et al., compared two 
formulations of injectable HA hydrogels to determine the 
importance of material properties on treatment of myocardial 
infarction. It was reported that the hydrogel with the higher 
modulus reduced infarct area and led to better functional 
outcomes after treatment [39]. Also, Yoon S.J. et al., reported 
that in the case of MI regeneration are involved two major 
factors: the molecular weight of HA and the progression of MI 
(sub-acute or chronic). Rat MI model was prepared by ligating 
the left anterior descending coronary artery and then different 
molecular weight HA hydrogels (50 kDa, 130 kDa and 170 kDa) 
were injected to the infarcted area. After four weeks, functional 
analysis of the heart and histological analysis was evaluated. 
It was observed that the most signifi cant regeneration of 
myocardium as well as functional recovery occurss in the 
case of 50 kDa HA hydrogel. Also, to observe the disease 
progression 50 kDa HA hydrogels were injected to sub-acute 
and chronic MI models. It was reported that the regeneration 
activity was signifi cantly decreased in the chronic models in 
comparison with the sub-acute models. These results suggest 
that composition of hydrogels and the progression of MI are 
very importans in treating MI [36].

Yoon S.J. et al., prepared HA hydrogel by chemical 
functionalization with acryl groups and via Michael-type 
addition it could react with PEG tetra-thiols. After four weeks 
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of treatment, it was observed that the myocardial structure 
begin to regenerate, prevent fi brous tissue formation and 
signifi cantly recover heart function in a rat MI model [38]. 

Fibrin: Fibrin is formed during the wound healing process 
by combining fi brinogen and thrombin under the catalysis of 
calcium ions. Fibrin gel is biodegradable, biocompatible, non-
toxic, present the ability to sustain cells adhesion and it has 
been extensively used as a tissue sealant and for the delivery 
of growth factors specifi c for tissue repair [18,35,40-42]. The 
most important characteristic for fi brin as a biomaterial is that 
was approved by Food and Drug Administration (FDA) [43].

Christman K.L. et al., reported that fi brin glue used as an 
injectable scaffold with or without skeletalmyoblasts decreases 
infarct size, improves cardiac function and increases blood 
fl ow to ischemic myocardium at rat models. In a subsequent 
research, they demonstrated that the cell survival was better 
when transplanted cells were delivered in fi brin glue compared 
to the cell alone injection [44,45]. 

In one study, it was used a fi brin patch seeded with swine 
bone marrow derived MSCs and surgically implanted on the 
surface of the scarred myocardial area in pigs. It was observed 
that the cells were found in MI and peri-scar regions 20 days 
post-transplantation and the exogenous cells were able to 
differentiate into cells with myocyte like characteristics and 
to improve the left ventricle function [46]. Also, Ryu J.H. et 
al., injected mixtures of bone marrow mononuclear cells 
(BMMNCs) and fi brin gel into the MI and it was observed 
that in eight months after treatments that implantation of 
BMMNCs using fi brin matrix resulted in more extensive tissue 
regeneration in the infarcted myocardium compared to control 
(BMMNCs implantation without matrix) and in the case of 
BMMNCs – fi brin neovascularization in infarcted myocardium 
was more extensive in comparison with the control [47].

Alginate: Alginate is a negatively charged polysaccharide 
derived from brown algae and composed of -D-mannuronic 
acid and -L-guluronic acid units. Based on the source and 
processing, its molecular weight ranges between 10 and 1000 
kDa and it can be crosslinked in the presence of calcium 
ions to form a gel structure and has recently been applied in 
myocardial tissue engineering, as an injectable cell delivery 
vehicle [48-51]. Due to its biocompatibility has been approved 
by FDA for human use as wound dressing material [52]. The 
major disadvantage of this polymer is its release of divalent 
ions to surrounding, resulting in limited long-term stability, 
but this mechanism can be counteracted with covalent cross-
linking using molecules [53]. 

In several studies it was demonstrated that the implantation 
of acellular alginate biomaterial in situ with bioactive molecules 
into the infarcted heart induced neovascularization and 
improved left ventricle function [26]. Also, Leor J. et al., used 
the swine model for intracoronary injection of alginate scaffold 
and reported an improvement in left ventricle function [54].

In a study, was reported that alginate with calcium 
chloride solution co-injected in a rat MI model formed gel and 

attenuates infarct expansion and cardiac dysfunction [55]. In 
another study it was reported that the myocardial injection 
of an alginate-chitosan hydrogel prevents adverse cardiac 
remodeling in a rat MI model attenuating infl ammation and 
reduces cardiac cell apoptosis [56].

Chitosan: Chitosan is a cationic polysaccharide, obtained 
as partially deacetylated derivative of chitin (1,4 -linked 
N-acetyl-D-glucosamine) from the shells of crabs and shrimps. 
Its fi nal degradation products are biocompatible chitosan 
oligosaccharides of variable length. The main properties of 
chitosan are hydrophilicity, biocompatibility and non-toxicity; 
these properties make it suitable for therapeutic applications 
such as drug delivery, tissue engineering, wound healing, 
etc [7,57-60]. In several studies have been reported that 
chitosan can increase the compression modulus of collagen 
based injectable hydrogel that reduce heart dilatation upon 
MI [56]. Wang H. et al., injected brown adipose derived stem 
cells (BADSCs) with chitosan hydrogel into infarcted rat hearts 
chitosan hydrogel. It was observed by histological staining that 
chitosan enhanced the survival of engrafted BADSCs, increased 
the differentiation rate of BADSCs and preserved heart function 
[61]. Also, it was reported that Fibroblast Growth Factor-2 
(FGF-2) incorporated chitosan hydrogels were immobilized on 
the surface of ischemic myocardium of rabbit models of chronic 
MI by UV-irradiation. It was observed by histopathological 
analyses a signifi cantly larger amount of viable myocardium 
and it was concluded that these preliminary results indicated 
the induction of angiogenesis [62]. Lu W - N. et al., performed 
a study where was used a temperature-responsive chitosan 
hydrogel injected into the infarcted heart wall of rat infarction 
models alone or together with mouse embryonic stem cells 
(ESCs). After four weeks it was reported that both groups 
showed better results than the control (phosphate buffered 
saline), but in the case of chitosan-ESCs were the best results 
[63]. 

In another study, it was reported the obtaining of a 
chitosan hydrogel without any external crosslinking agent 
by inducing the gelation of a viscous chitosan solution with 
aqueous NaOH or gaseous NH3. It was evaluated the hydrogel 
capacity for regeneration of MI and the results demonstrated 
that the chitosan hydrogel was successfully incorporated into 
the epicardial surface of the heart [64]. 

Synthetic hydrogels

Besides the numerous advantages of natural polymers, their 
variability in physical properties, low mechanical properties, 
risks of pathogen, these issues represent a problem for many 
applications. A solution to these problems was represented by 
synthetic polymers. Synthetic polymers are capable of being 
tailored to meet specifi c applications because of their properties 
like porosity, tensile strength, elastic modulus and degradation 
rate [65-67]. For cardiac tissue engineering applications are 
used some synthetic polymers including poly (ethylene glycol) 
(PEG), polylactic acid (PLA), poly (lactic-co-glycolic acid) 
(PLGA), polycaprolactone (PCL), polyurethane (PU), etc [14].

Poly (ethylene glycol) (PEG): Poly (ethylene glycol) (PEG) a 
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synthetic polymer of ethylene glycol used in several biomedical 
applications due to its biocompatible and to its capacity in 
the controlled release of growth factors [68]. In a study, PEG 
alone was injected into the myocardium in a rat model of MI 
and it was reported the improvement of wall thickness [69]. 
Similar results were seen by Nair L.S. using PEG functionalized 
with vinyl sulfones (VS) and mixed with dithiothreitol (DTT) 
resulting non-degradable injectable PEG hydrogels. The 
hydrogels were injected two minutes post-MI in a rat model 
and after four weeks it was reported that the wall thickness was 
signifi cantly improved [37]. Also, Dobner S. et al., used a non-
degradable injectable PEG hydrogel to treat MI in a male Wistar 
rat model. It was observed that the injection of non-degradable 
PEG was effective in ameliorating pathological remodeling 
in the immediate post-infarction healing phase, but it were 
found a macrophage mediated infl ammatory reaction, which 
is undesirable [68].

Wang T. et al., encapsulated bone marrow-derived stem 
cells (BMSCs) in -cyclodextrin/MPEG–PCL–MPEG hydrogel. 
Seven days after MI were injected into the MI simultaneously 
100 μl of -cyclodextrin solution containing BMSCs and 100 
μl of MPEG–PCL–MPEG and four weeks after treatment 
histological analysis showed that the hydrogel was absorbed, 
cell retention and vessel density in the infarcted tissue were 
increased and the left ventricle ejection function [70].

Poly(N-isopropylacrylamide) (PNIPAAm): PNIPAAm is 
a thermosensitive and a non-biodegradable polymer with a 
thermal transition temperature of 32°C, at room temperature 
it’s an aqueous solution and at body temperature (37°C) it is 
forming a hydrogel [71]. This polymer was often used in the 
cardiac repair due to its ability for rapid gelation post-injection 
as temperature of the material is raised above its lower critical 
solution temperature in the myocardium [12, 72]. In a study, a 
PNIPAAm hydrogel synthesized via free radical polymerization 
was injected in a chronic rat MI model and it was observed 
signifi cant improvements in wall thickness, capillary density 
and percent LV fractional area change [73]. 

Miyagawa S. et al., cultured neonatal rat cardiomyocytes on 
PNIPAAm - grafted polystyrene dishes and detached as a square 
cell sheet at 20°C and then were implanted to rats. After two 
weeks the rats were divided into three groups: the fi rst group 
was treated with cardiomyocyte sheet implantation, the second 
group was treated with fi broblast sheet implantation and the 
last (the control group) underwent no additional treatment. 
After eight weeks it was observed that the fi rst group showed 
the best recovery because the cardiomyocyte sheets became 
attached to the MI, showed angiogenesis [74]. 

Polyvinyl alcohol (PVA): PVA is a hydrophilic biocompatible 
polymer which shows semi-crystallinity and it is obtained by 
polymerization of vinyl alcohol formed through the partial 
hydrolysis of vinyl acetate [75]. The PVA hydrogel is developed 
using chemical or physical cross-linking, but it has been 
demonstrated that the chemical cross-linking shows some 
disadvantages and in the last years the chemical cross-linking 
was replaced with photocrosslinking. In several studies 
was reported that PVA as a hydrogel presents low adhesion 

properties, but this disadvantage can be enhanced by mixing it 
with biological factors [76, 77]. 

Due to its properties (biocompatibility, strong mechanical 
properties, elasticity) PVA can be used in various tissue 
engineering applications, especially cardiac tissue repair [78].

Hybrid and composite hydrogels

In the last years, a number of hybrid and composite 
hydrogels have been developed for MI applications [7]. A natural 
material presents better biocompatibility and cell affi nity 
than a synthetic material, but presents low properties like 
mechanical strength, degradation rate and water content. The 
combination of two materials (natural-synthetic) in order to 
obtain hydrogels seems to be a good solution when it comes to 
capitalizing on the advantages of both [14,79]. Nanocomposite 
hydrogels are represented by nanoparticles such as polymeric 
nanoparticles, inorganic nanoparticles, metallic-metal oxide 
based nanoparticles and carbon-based nanomaterials which 
can be incorporated in hydrogels [7]. 

Nikkhah M. developed crosslinkable hydrogels (gold 
nanorod-incorporated gelatin) with improved electrical 
and structural properties for cardiac tissue engineering. It 
was reported that because of these hybrid hydrogels, the 
cardiomyocytes shown greater cell retention and a high 
level of viability over the whole duration of culture. Also, 
it was observed that these hydrogels provide a perfect 
microenvironment for cardiac cells to grow and integrate to 
the native heart tissue with superior electrical and structural 
properties [80]. In another study, it was obtained a hybrid 
hydrogel formed of a two-component PEG and fi brinogen 
for cardiac tissue engineering [17]. Mihardja S.S. et al., mixed 
polypyrrole (a conductive polymer) with alginate and used 
an ischemia-reperfusion rat myocardial infarction model to 
observe the effects. The animal model was treated with a local 
injection of 0.025% polypyrrole in alginate polymer blend 
into the infarct zone. After fi ve weeks post-treatment it was 
observed that the presence of hydrogel signifi cantly enhanced 
infi ltration of myofi broblasts into the infarct area compared to 
control (saline solution) [81]. Pok S. et al., developed a multi-
layered scaffold formed by geletin and chitosan and supported 
by a polycaprolactone (PCL) (a biodegradable polymer). It was 
observed that the hydrogel have suffi cient mechanical strength 
and can maintain cardiomyocytes viability and the best cell 
spreading, viability and scaffold integrity resulted from a 
hydrogel with equal parts of gelatin and chitosan [82].

In several studies it has been reported that the DNA 
can be effi ciently deliver to the infarcted site when is 
administered intramyocardially with the help of naturally 
derived methacrylated gelatin hydrogel [83]. Paul A. et al., 
obtained an injectable nanocomposite hydrogel formed from 
polyethylenimine, graphene oxide nanosheets and growth 
factors incorporated into the methacrylated gelatin. For in vivo 
tests were used a rat model with acute myocardial infarction 
and the therapeutic hydrogel was injected intramyocardially in 
the peri-infarct regions. It was reported that the experiment 
not only confi rmed the biocompatibility aspects of the system 
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but also confi rms the in vivo effi cacy of the hydrogel for cardiac 
repair [84].

The role of stem cells

The fi rst cells tested for transplantation in patients were 
skeletal muscle precursor cells, but it has been showed that 
this type of cells presented a high risk of arrhythmias [79]. 
Interests have therefore shifted to other stem cells with 
cardiomyogenic potency such as bone marrow mesenchymal 
stem cells, embryonic, cardiac stem cells, cardiomyocyte 
progenitor cells, hematopoietic cells, skeletal myoblast, fetal 
or umbilical cord blood cells [85-88].

Bone marrow stem cells (BMSCs): Bone marrow contains 
a population of differentiated cells, but also a small amount 
of stem/progenitor cells like mesenchymal stem cells (MSCs), 
hematopoietic stem cells (HSCs) and endothelial progenitor 
cells (EPCs). Mesenchymal stem cells (MSCs) are multipotent 
adult stem cells and are used in tissue engineering and 
cell-based therapies in all fi elds ranging from orthopedic 
to cardiovascular medicine. MSCs can be isolated from the 
bone marrow and subsequently expand in vitro and they are 
candidates for various therapeutic applications [89,90]. The 
main advantage of MSCs is that they can be easily isolated 
and expanded in culture; and after a MI are preferred for use 
due to their self-renewal and proliferation potential. It was 
reported that MSCs not only differentiate into cardiomyocytes 
and vascular cells, but also secrete cytokines and growth 
factors, which induce neovascularization, anti-apoptosis or 
anti-infl ammation [85]. Also, Kudo M. et al., reported that 
bone marrow derived mononuclear cells (BMMNCs) that could 
reduce infarct size and differentiate into cardiomyocytes [91]. 

Cardiac stem cells (CSCs): Cardiac stem cells are stem 
cells specifi c to the heart. They can differentiate into three 
lineages; cardiomyocytes, endothelial cells and vascular 
smooth muscle cells both in vitro and in vivo. Once injected 
intracoronarily or directly into the rat MI, these cells led to 
myocardium regeneration and improved cardiac function. Also, 
it was reported the in vivo cardiomyogenic potential in animal 
MI models. CSCs express three cell-surface markers MDR-1 
(multi-drug resistant protein), C-kit (the receptor for stem cell 
factor) and Sca-1 (Stem cell antigen 1) [92-94]. 

Conclusions and Perspectives 

Hydrogels for cardiac tissue repair and/or regeneration for 
the treatment of MI continues to be a promising approach. The 
injectable hydrogels are superior to other forms of biomaterials 
beside their properties like cell/drug delivery vehicle or 
because it provides a platform for elucidating cardiogenic stem 
cell biology, the most important thing is due to the property 
that these hydrogels can be injected. It has been demonstrated 
that a variety of materials with suitable properties are being 
explored to prevent the progression of MI and these materials 
can be naturals (biocompatible, biodegradable, low toxicity, 
relatively low cost, bioactive), synthetics (porosity, tensile 
strength, elastic modulus, degradation rate) or hybrids (which 
combine the characteristics of both natural and synthetic materials). 

In future, the researchers will deepen on the survival and 
integration of the delivered cells in the cardiac environment 
and their differentiation into the required myogenic phenotypes 
and, as it was discussed in this review, a topic of interest refers 
to the replacement of chemical cross-linking (which can often 
be harmful for the cells) with photocrosslinking or ionic cross-
linking [7].

Presently, all the research been done on repair of infarcted 
heart tissue using injectable hydrogels in small animals like 
mice and rats and at this time they have not been reported 
researches on application of hydrogel therapies on large 
primates and humans.
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