It has become increasingly important to consider the efficiency of movies in creating box revenue while using fewer movie resources. Further, there is a lack of eWOM (online-word-of-mouth) studies regarding using the production efficiency of movies as a dependent outcome measure replacing box revenue. This study shows that production efficiency can be suggested by comparing movie resources powers, i.e., powers of actors, directors, distributors, and production companies, which are input for movie production, and the box office. For testing the validity of the measure of production efficiency, this study examines the effect of eWOM attributes, i.e., review depth, volume, rating, review sentiment, and helpfulness on production efficiency. Data envelopment analysis is adopted to produce the efficiency of movies. This study provides insights into a current movie study on eWOM by showing the effect of interaction between eWOM (review rating) and helpfulness on production efficiency. Further, this study purports to test the prediction power in predicting production efficiency using decision trees, neural networks, and logistic regression. These results show that k nearest neighbor and automated neural networks outperform the other machine learning methods in classifying efficient movies.
Keywords:
Published on: Oct 12, 2023 Pages: 8-15
Full Text PDF
Full Text HTML
DOI: 10.17352/amp.S1.000002
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."